What If Several of the World’s Biggest Food Crops Failed at the Same Time?
Anthony Janetos, 8 Jun 17

Drought-damaged corn on an Ohio farm, 2012. Christina Reed, USDA/Flickr, CC BY

Less than one-quarter of Earth’s total cropland produces nearly three-quarters of the staple crops that feed the world’s population – especially corn, wheat and rice, the most important cereal crops. These areas are our planet’s major breadbaskets.

Historically, when a crop failed in one of these breadbaskets, only nearby areas had to contend with shortages and rising prices. Now, however, major crops are traded on global markets, which means that production failures can have far-reaching impacts. Moreover, climate change is expected to generate heat waves and drought that could cause crop losses in most of the world’s breadbaskets. Indeed, failures could occur simultaneously in several of these key regions.

Top 10 grain-producing countries (5-year average, 2012/2013 – 2016/2017), based on 5-year USDA PS&D data. Brian Barker, University of Maryland, Author provided

Pardee Center postdoctoral scholar John Patrick Connors and I are using mathematical models to study the potential environmental and economic impacts of failures in multiple breadbaskets around the world. It is already clear from our preliminary work that this is a real, near-term threat.

The good news is that not all of these regions respond in the same way to shocks in other places in the world. Some could bring new land into production quickly, easing stresses caused by crop failures elsewhere. But in order to make global food systems more robust, we need to know more about the most damaging consequences of multiple breadbasket failures.

A vulnerable system

In the past several decades, many of the world’s major breadbaskets have experienced shocks – events that caused large, rapid drops in food production. For example, regional droughts and heat waves in the Ukraine and Russia in 2007 and then again in 2009 damaged wheat crops and caused global wheat prices to spike by substantial amounts in both years. In 2012 heat and drought in the United States slashed national corn, soybean and other crop yields by up to 27 percent. And yields of important food crops are low and stagnating in many countries due to factors including plant diseases, poor soil quality, poor management practices and damage from air pollution.

At the same time, many experts assert that world food production may have to double by 2050 to feed a growing population and satisfy rising demand for meat, poultry and dairy products in developing countries. Global agricultural production has risen over the past 50 years, largely fueled by improvements in plant breeding and more intensive use of inputs, such as mechanized equipment, fertilizers and pesticides. This trend has eased pressure to bring new land into production. But it has limits, especially in the developing world, where the need to produce more food has been a main driver of deforestation in recent decades.

High food prices and stagnant wages trigger riots in Egypt in 2008.

It is clear that rising demand, growing international trade in agricultural products, and the potential for weather-, climate- and soil-related shocks are making the world food production system less resilient. Global agricultural trade can mean that price spikes in one region, if they are severe enough, can be felt broadly in other regions. Minor shocks, on the other hand, could be lessened by trade and by using grain reserves.

There is increasing evidence that in very poor countries, food price increases and shortages can lead to civil unrest and worsen other social and political stresses. And more wealthy countries are not immune, given the concentration of world food production and the global nature of trade. For example, the Russian/Ukrainian heat wave referenced above led to spikes in food prices, not just in the price of wheat. However, more wealthy countries also typically have more ability to buffer price shocks by either using grain reserves or increasing trade.

Modeling potential shocks

How can we understand this risk and its potential consequences for both rich and poor nations? Programs already exist to provide early warning of potential famines in the world’s poorest countries, many of which already depend heavily on food aid. There also are programs in wealthier nations that monitor food prices and provide early warnings of price spikes.

But these programs focus mainly on regional risks, and often are not located in major food production areas. Very little work has been done to analyze risks of simultaneous shocks in several of the world’s breadbaskets.

We want to understand the impacts that shock events could have if they occur in the real world so that we can identify possible contingency plans for the largest-impact events. In order to do that, we have used an integrated assessment model, the Global Change Assessment Model, which was developed by the U.S. Department of Energy and is freely available to users around the world. Integrated assessment models have been designed specifically to simulate the interactions among Earth’s energy, economic and land use systems.

We have developed scenarios in which small shocks (10 percent crop loss) and large shocks (50 percent crop loss), averaged over five years, are applied to corn, wheat or rice in their major production regions, and then to all the combinations of one, two or all three crops in one, two or the top three production regions.

Flooding in October 2009 caused heavy damage to rice farms in Indonesia. NR-PH001 World Bank/FlickrCC BY-NC-ND

Unsurprisingly, our results to date suggest that large shocks have larger effects than smaller shocks, as measured in subsequent changes in land use, the total amount of land dedicated to agriculture and food prices. But more interestingly, not all breadbasket regions respond to shocks in the same way.

Some of these areas are quite unresponsive to shocks occurring elsewhere in the world. For example, the total amount of land in agricultural production in South Asia changes relatively little due to shocks elsewhere in the world, largely because most of the arable land is already in use.

But other regions are extremely responsive. Notably, Brazil has the ability to bring a lot of new land into production if large shocks occur elsewhere, because it still has a significant amount of potentially arable land that is not currently being farmed. However, this land currently is mostly forest, so clearing it for agriculture would add significantly to atmospheric concentrations of carbon dioxide, and thus to global climate change.

Sign in to view full article

Singapore: Securing Tomorrow’s Energy
Finding a green alternative to fossil fuels can never get this tough for Singapore – we can’t use wind turbines ...
Luan Do
Mon, 2 Jan 17
Singapore’s Ageing Population, a Challenge for Hospitals and Nurses
The increase in hospital admission and ensuing demands on intensive medical care will trigger the need for more hospital beds: ...
Epoch Newsroom
Mon, 2 Jan 17
Exiled Chinese Billionaire Sheds Light on Regime’s Forced Organ Harvesting
Though associated with communist leaders, Guo Wengui declared his support for persecuted Falun Gong adherents
Leo Timm
Fri, 31 Mar 17
How Robots Can Help Us Embrace a More Human View of Disability
When dealing with the otherness of disability, the Victorians in their shame built huge out-of-sight asylums, and their legacy of ...
Thusha Rajendran
Tue, 9 May 17
Young Workers Expect Their Older Colleagues to Get Out of The Way
There are many names for the narratives pitting the older generation against the younger: Gen-Y versus Baby Boomers, “Generation Me” ...
Michael North
Wed, 15 Mar 17
Get your July/August 2017 issue at Kinokuniya stores today!
Join us today!
Sports Elements
Read about Forced Organ Harvesting
Sports Elements
Sports Elements